人类目前最强功能材料——石墨烯

来源:支点投资作者:林东洋发布时间:2013-09-10

    一、石墨烯概念
    石墨烯具有诸多超乎人类想象的优越特性。
    第一:石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂;
    第二:石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。
    石墨烯市场售价大约5000元/克,比黄金贵15倍,广泛用于军事、电子工业领域。石墨烯在新能源领域如超级电容器、锂离子电池方面,由于其高传导性、高比表面积,可适用于作为电极材料助剂。
    石墨烯的来源。常见的天然石墨是由一层层蜂窝状有序排列的平面碳原子堆叠形成的,石墨的层间作用力较弱,很容易互相剥离,形成较薄的石墨片。当把石墨片剥成单层之后,形成的一个碳原子厚度的单层就是石墨烯,是碳的二维结构,厚度只有0.335纳米,把20万片薄膜叠加到一起,也只有一根头发丝那么厚。英国曼彻斯特大学的两位科学家科斯提亚• 诺沃谢夫和安德烈• 盖姆因为首先发现石墨烯获得2010年度的诺贝尔物理学奖。
    石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域,比如超轻防弹衣,超薄超轻型飞机材料等。根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。
    石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。
    韩国成均馆大学和三星公司的研究人员已经制造出由多层石墨烯和聚酯片基底组成的透明可弯曲显示屏。
    石墨烯的材质优点总结:其导电性能比铜还好几倍;坚硬比钢铁大10倍而且极轻,由此可见可用于飞机制造来减少重量与避弹衣制造。
    石墨烯的应用前景:太空电梯缆线、替代硅生产超级计算机、光子传感器、液晶显示材料、新一代太阳能电池等领域。
    瑞典和美国的科学家使用神奇的石墨烯材料的发光面板,总有一天也许会让基本的灯泡变成多余的。
    二、发展简史
    石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。
    石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。
    在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%-80%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了非同寻常的优良特性。普通电容器和超级电容器结构(超级电容器不同于电池,在充放电时不会发生化学反应,电能的存储或释放都是通过静电场建立的物理过程完成的)
    三、石墨烯特性 
    1、电子运输:
   在发现石墨烯以前,大多数(如果不是所有的话)物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以,它的发现立即震撼了凝聚态物理界。虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来。这些可能归结于石墨烯在纳米级别上的微观扭曲。 石墨烯还表现出了异常的整数量子霍尔行为其霍尔电导=2e²/h,6e²/h,10e²/h.... 为量子电导的奇数倍,且可以在室温下观测到。这个行为已被科学家解释为“电子在石墨烯里遵守相对论量子力学,没有静质量”。
    2、导电性:
    石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。
    石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载子”(electric charge carrier),的性质和相对论性的中微子非常相似。    
    石墨烯有相当的不透明度:可以吸收大约2.3%的可见光。而这也是石墨烯中载荷子相对论性的体现
    3、机械特性:
    石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。哥伦比亚大学的物理学家对石墨烯的机械特性进行了全面的研究。在试验过程中,他们选取了一些之间在10—20微米的石墨烯微粒作为研究对象。研究人员先是将这些石墨烯样品放在了一个表面被钻有小孔的晶体薄板上,这些孔的直径在1—1.5微米之间。之后,他们用金刚石制成的探针对这些放置在小孔上的石墨烯施加压力,以测试它们的承受能力。    
    研究人员发现,在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约2.9微牛。据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨烯断裂。如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断。换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。 
    4、电子的相互作用:
    利用世界上最强大的人造辐射源,美国加州大学、哥伦比亚大学和劳伦斯•伯克利国家实验室的物理学家发现了石墨烯特性新秘密:石墨烯中电子间以及电子与蜂窝状栅格间均存在着强烈的相互作用。    
    科学家借助了美国劳伦斯伯克利国家实验室的“先进光源(ALS)”电子同步加速器。这个加速器产生的光辐射亮度相当于医学上X射线强度的1亿倍。科学家利用这一强光源观测发现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且电子和电子之间也有很强的相互作用。
    5、化学性质:
    我们至今关于石墨烯化学知道的是:类似石墨表面,石墨烯可以吸附和脱附各种原子和分子。从表面化学的角度来看,石墨烯的性质类似于石墨,可利用石墨来推测石墨烯的性质。石墨烯化学可能有许多潜在的应用,然而要石墨烯的化学性质得到广泛关注有一个不得不克服的障碍:缺乏适用于传统化学方法的样品。这一点未得到解决,研究石墨烯化学将面临重重困难。
    四、制备方法
    1、微机械分离法:
    最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。2004年Novoselovt等用这种方法制备出了单层石墨烯,并可以在外界环境下稳定存在。典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。但缺点是此法是利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。
    2、取向附生法—晶膜生长:
    取向附生法是利用生长基质原子结构“种”出石墨烯,首先让碳原子在 1 1 5 0 ℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“ 孤岛” 布满了整个基质表面,最终它们可长成完整的一层石 墨烯。第一层覆盖 8 0 %后,第二层开始生长。底层的石墨烯会与钌产生强烈的交互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影 响碳层的特性。另外Peter W.Sutter 等使用的基质是稀有金属钌。 
    3、加热 SiC法:
    该法是通过加热单晶6H-SiC脱除Si,在单晶(0001) 面上分解出石墨烯片层。具体过程是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250~1450℃后恒温1min~20min,从而形成极薄的石墨层,经过几年的探索,Berger等人已经能可控地制备出单层或是多层石墨烯。其厚度由加热温度决定,制备大面积具有单一厚度的石墨烯比较困难。包信和等开发了一条以商品化碳化硅颗粒为原料,通过高温裂解规模制备高品质无支持(Free standing)石墨烯材料的新途径。通过对原料碳化硅粒子、裂解温度、速率以及气氛的控制,可以实现对石墨烯结构和尺寸的调控。这是一种非常新颖、对实现石墨烯的实际应用非常重要的制备方法。 
    4、化学解理法:
    化学解理法是将氧化石墨通过热还原的方法制备石墨烯的方法,氧化石墨层间的含氧官能团在一定温度下发生反应,迅速放出气体,使得氧化石墨层被还原的同时解理开,得到石墨烯。这是一种重要的制备石墨烯的方法,天津大学杨全红等用低温化学解理氧化石墨的方法制备了高质量的石墨烯。 
    5、化学还原法:
    化学还原法是将氧化石墨与水以1 mg/mL的 比例混合, 用超声波振荡至溶液清晰无颗粒状物质,加入适量肼在1 0 0℃回流2 4 h ,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯。Sasha Stankovich 等利用化学分散法制得厚度为1 nm左右的石墨烯。
    五、应用前景
    1、在纳电子器件方面的应用:
    2005年,Geim研究组[3 J与Kim研究组H 发现,室温下石墨烯具有l0倍于商用硅片的高载流子迁移率(约10 am /V•s),并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性(300 K下可达0.3 m),这是石墨烯作为纳电子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。较大的费米速度和低接触电阻则有助于进一步减小器件开关时间,超高频率的操作响应特性是石墨烯基电子器件的另一显著优势。此外,石墨烯减小到纳米尺度甚至单个苯环同样保持很好的稳定性和电学性能,使探索单电子器件成为可能。 
    2、代替硅生产超级计算机:
    科学家发现,石墨烯还是目前已知导电性能最出色的材料。石墨烯的这种特性尤其适合于高频电路。高频电路是现代电子工业的领头羊,一些电子设备,例如手机,由于工程师们正在设法将越来越多的信息填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石墨烯的出现,高频提升的发展前景似乎变得无限广阔了。这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。 
    3、光子传感器:
    石墨烯还可以以光子传感器的面貌出现在更大的市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担当,但硅的时代似乎就要结束。去年10月,IBM的一个研究小组首次披露了他们研制的石墨烯光电探测器,接下来人们要期待的就是基于石墨烯的太阳能电池和液晶显示屏了。因为石墨烯是透明的,用它制造的电板比其他材料具有更优良的透光性。 
    4、减少噪音:
    美国IBM 宣布,通过重叠2层相当于石墨单原子层的“石墨烯(Graphene)”,试制成功了新型晶体管,同时发现可大幅降低纳米元件特有的1/f 石墨烯,试制成功了相同的晶体管,不过与预计的相反,发现能够大幅控制噪音。通过在二层石墨烯之间生成的强电子结合,从而控制噪音、噪声。其它应用。
    石墨烯还可以应用于晶体管、触摸屏、基因测序等领域,同时有望帮助物理学家在量子物理学研究领域取得新突破。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用这一点石墨烯可以用来做绷带,食品包装甚至抗菌T恤;用石墨烯做的光电化学电池可以取代基于金属的有机发光二极管,因石墨烯还可以取代灯具的传统金属石墨电极,使之更易于回收。这种物质不仅可以用来开发制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,甚至能让科学家梦寐以求的2.3万英里长太空电梯成为现实。 
    六、石墨烯材料的诞生获得2010年诺贝尔物理学奖 : 
    他们曾是师生,现在是同事,他们都出生于俄罗斯,都曾在那里学习,也曾一同在荷兰学习和研究,最后他们又一起在英国制备出了石墨烯。这种神奇材料的诞生使安德烈•海姆和康斯坦丁•诺沃肖洛夫获得2010年诺贝尔物理学奖。
    海姆和诺沃肖洛夫2004年制备出石墨烯。这是目前世界上最薄的材料,仅有一个碳原子厚。与所有其他已知材料不同的是,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好。此外,石墨烯单电子晶体管可在室温下工作。而作为热导体,石墨烯比目前任何其他材料的导热效果都好。
    海姆和诺沃肖洛夫认为,石墨烯晶体管已展示出优点和良好性能,因此石墨烯可能最终会替代硅。由于成果要经得起时间考验,许多诺贝尔科学奖项都是在获得成果十几或几十年后才颁发。而石墨烯材料的制备成功距今才6年时间,就获得了诺贝尔奖,这使诺沃肖洛夫感到意外。他说:“今天早上听说这个消息时,我非常惊喜,第一个想法就是奔到实验室告诉整个研究团队。”而海姆则表示,“我从没想过获诺贝尔奖,昨天晚上睡得很踏实”。
    海姆认为,获得诺贝尔奖的有两种人:一种是获奖后就停止了研究,至此终老一生再无成果;一种是生怕别人认为他是偶然获奖的,因此在工作上倍加努力。“我愿意成为第二种人,当然我会像平常一样走进办公室,继续努力工作,继续平常生活。” 七、国内生产状况    
    石墨烯产业还在量产探索阶段,还没有发现一种成熟的方法能够批量生产性能优质的石墨烯。    
    目前氧化石墨还原法相对更加容易量产,是生产石墨烯的主流制备工艺。不过通过氧化还原法,容易使得石墨烯的分子结构收到破坏,而降低了石墨烯的性能;另外,氧化还原法得到的石墨烯溶液中石墨烯非常容易发生团聚现象,使得产品很多的性能与理论值有很大差距。    
    石墨烯另一个相对较成熟的制备方法是气相沉积法。但仍然很多技术问题没有解决,如:使用气相沉积法所得的石墨烯相对机械剥离法制备的石墨烯难以运输;一些使用气相沉积法所得石墨烯的属性(量子霍尔效应)并没有在气象沉积法制备的石墨烯中发现,说明气相沉积法可能会影响石墨烯的特性;而且使用气相沉积法得到的石墨烯片只能达到平方厘米的量级,难以满足石墨烯的工业化应用。    
    石墨烯的目前还不具备工业化生产的条件,各国都在针对石墨烯的制备进行积极的探索,也不断的有新的制备方法出现,业内预计2015 年前就能够实现石墨烯的规模化量产。    
    国内的供需情况。石墨烯产业最大的瓶颈在于还没有形成完整的产业链,目前仍没有一种可以应用石墨烯的产品能够规模化生产。对石墨烯最大的需求仍然是各大院校及科研机构的研究使用。    
    石墨烯的高强度、高导电性及传热性、超大的比表面积等特性能够在航天军工、锂离子电池、超级电容器等多领域有潜在应用,但由于其成本过高,一直都处于研究阶段。从目前的技术发展来看,最有可能实现工业化使用石墨烯的下游行业是复合材料领域和显示技术领域。将石墨烯添加到塑料、橡胶、涂料等基体中,可以大幅增强产品的性能,如强度、韧度、导电性及传热性等,在符合材料领域的应用也是目前石墨烯最大的产业化应用。    
    目前的显示器件中应用最广泛导体材料是氧化铟锡ITO 材料,将石墨烯作为导体材料制成显示器件,将增强器件的韧度,制成可以折叠的薄膜显示器。业内也预计显示技术领域的应用将是下一个能够产业化应用的领域。   
    据有关资料显示,我国已有包括清华大学、北京大学、中科院化学所、北京科技大学、首都师范大学、中国科技大学、上海交通大学、西安交通大学、中山大学、华南理工大学等近100家高校介入石墨烯的研究。目前国内已有公司与德国方面合作,从事电池方面的开发工作,已经做出产品,即将送往测试;   
    一克石墨烯卖到5000元,超过黄金价格的15倍。不过将这种产品生产出来并不容易,国内尚无上市公司生产石墨烯。可能向石墨烯业务发展的上市公司主要有石墨碳素材料上市公司和炭黑上市公司,目前,两市已公开宣布介入石墨烯行业的上市公司共有3家,除中国宝安(公司控股子公司贝特瑞的产品厚度为5~25纳米,超过10层,“严格来说不叫石墨烯,叫纳米石墨”。资料显示,只有一层碳原子构成的产品才叫石墨烯,厚度为0.335纳米、理论比表面积为2600m2/g;2~10层的称为多层石墨烯。这个行业3~5年才可以大规模应用)外,还有金路集团以及力合股份,2010年8月,上市公司力合股份参股公司投资石墨烯项目在江苏无锡市惠山区江苏数字信息产业园落地。预期该项目将建成一个年产10吨的石墨烯生产线。中钢吉炭(000928)和方大炭素(600516)都从事石墨生产,但是据业内人士称,他们并未听说这两家公司从事石墨烯研发或生产。其它如号称国内首家从事石墨烯生产的厦门凯纳石墨技术有限公司,年产量也仅为20-30克。还有一家南京吉仓纳米科技有限公司,也称能生产石墨烯。